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Abstract

A numerical investigation is performed for the two dimensional magnetohydro-

dynamics stagnation point past a stretching sheet in the presence of chemical

reaction with convective boundary conditions and thermal radiation effects. Us-

ing suitable similarity transformations, the governing partial differential equations

are transformed into a system of coupled non-linear ordinary differential equations.

Shooting method is adopted for solving the set of transformed dimensionless or-

dinary differential equations, MATLAB software is utilized for the calculation of

numerical results. The effects of respective flow on dimensionless temperature and

concentration profiles are presented in graphs. It is noticeable, from the results

that the heat and mass transfer rates escalates as chemical reaction parameter

increases.
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Chapter 1

Introduction

Magnetohydrodynamics is concerned with the mathematical and physical frame-

work that leads into the idea of magnetic-dynamics, in electrically conducting flu-

ids for example in plasma studies, magnetohydrodynamics power generator, liquid

metals system of fusion reactors and motion of earth’s core etc. The practice of

magnetohydrodynamics stagnation point flow in science and engineering are of

great significance involving the effects on velocity, heat andomass transferoin the

presence ofochemical reaction. This phenomenon occurs frequently in petroleum

industries and agriculture. The MHD factor plays key role in maintenance of the

cooling rate and for achievement of the desired quality of the product as well.

1.1 Background

The MHDoboundary layeroflow ofoan electricallyoconducting fluid was first stud-

ied by Pavlov [1]. He investigated the flow ofoa conducting oincompressible vis-

cous fluidodue toodeformation ofoa plane elasticosurface in aotransverseomagnetic

field with the approximation ofoboundary-layer theory. Chakrabarti and Gupta

[2] extended this study to include the temperature distribution over aostretching

sheetoin theopresence ofoa uniform suction. Later, this problem was further

extended to magnetohydrodynamic flow ofoan electricallyoconductingopower-law

1
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fluid over aostretching sheet in theopresence ofoa uniform transverseomagnetic

field by Andersson et. al. [3]. The influence ofomagnetohydrodynamics ono

two dimensionaloflow ofoan incompressibleoEyring—Powellofluid towardsoa lin-

earostretching sheet was investigated by Akbar et. al. [4].

Choi [5] was the first who introduced the theory of nanofluids with its applica-

tions. He investigated that by adding nanoparticles into theofluid, theothermal

conductivity of theofluid enhanced. Further MHD stagnationopoint flowoof a

nanofluid towards a stretchingosheet is discussed by Ibrahim et. al. [6]. The MHD

flowoof anoelectrically conductingofluid is important inomodern metallurgyoand

metalworking processosuch as the process fusing ofometals inoan electricalofurnace

byoapplying aomagnetic fieldoand theoprocess ofocooling ofothe firstowall insideoa

nuclear reactorocontainmentovessel, where theohot plasmaois isolatedofrom the

wall. Several authors have been studying the heat transfer behavior utilizing

nanofluids. Bachok et. al. [7] studied theosteady boundaryolayer flowoof a

nanofluidopast aomoving semioinfinite flatoplate in aouniform freeostream. Khan

andoPop [8] discussed the laminar fluidoflow resulting fromothe stretchingoof aoflat

surface. In theorecent years, for many research scientists the problem involving

stagnation point flow is noticeable. Due tooits remarkable properties, theostudy

ofoflow closeoto aostagnation pointoover a stretchingoand shrinkingosheet hasoa

vast rangeoof practicaloapplications, for example,otemperature reducingoprocess

ofoatomic reactorsoas welloas electronicoequipment, theolayouts ofothrust bear-

ings,oseveral hydrodynamicsoprocesses. Mahapatra [9] analyzed the flowonearby

aostagnation pointoover aostretching sheetowith heat transfer effects. Further-

more, Nazar et al. [10] extended the work by using a micropolar fluid. Later on,

Mustafa et al. [11] investigated the steadyoboundary layeroflow and oheat trans-

feronear theostagnation-pointoof aonanofluid towardsoa stretchingosheet. Nandy

and Pop [12] analyzed the steadyotwo dimensionaloMHD stagnation-pointoflow

andoheat transferoof aopower-lawofluid overoa continuouslyonot stretchingosurface

inothe presenceoof thermal radiation. Nasir et al. [13] discussed the radiation ef-

fects on the MHDostagnation-pointoflow ofoa nanofluidoover a stretching sheet

with theoconvective boundaryocondition. This study is helpful for solving the
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problems of hypersonic flows around aircraft, rocket engines for plasma generators

and detonation fronts andolaser deflagrationowaves forovarious discharges.

The heat transfer phenomena that occurs between two or more bodies or within

the same body due to a temperature difference is well–known for everyone. In

various industrial and engineering processes, the characteristics of heat transfer

have huge effects on microelectronics, transportation and fuel cells etc. The heat

conduction law was suggested by Fourier [14], but it has a limitation that for the

temperature field it generates a parabolic energy equation. To resolve this issue

in theoclassical Fourierolaw ofoheat conduction,oCattaneo [15] added the thermal

relaxation time. After that, the MHD 3D UCM fluid flowoover a stretching sheet

withoMaxwell–Cattaneooheat flux model is discussedoby Christov [16].

In engineering, heat andomass transferoproblems withochemical reactionsoare part

and parcel. Any chemical reaction can further be characterized with certain pro-

cess including disappearance of evaporation, shifting of impetus and flow in a

dessert cooler. A homogeneous reaction occurs with sole entity through specified

region whereas a heterogeneous reaction occurs within confined region or space.

The reaction in which rate and the concentration are directly proportional is re-

garded as first order reaction. The diffusion of species with chemical reaction has

immense utilities regarding insulation, pollution studies, synthesis materials and

oxidation. Das [17] considered the effects in MHD micropolar flow, heat andomass

transferowith thermal radiation andochemical reaction.

Bhattacharyya [18] explored solutions for stagnation-point boundary layer flow

with chemical reaction pastoa shrinking/stretchingosheet. Khanoet al. [19] stud-

ied the effects ofouniform transverse magneticofield and chemical reaction onoheat

andomass transferoflow in an electricallyoconducting incompressibleonanofluid past

aocontinuously movingoplate withovariable surfaceotemperature. Furthermore,

Kumar and Verma [20] used Cattaneo–Chirstov heat flux model to examine the

hydromagnetic boundary layeroflow of a nanofluid overoa stretchingosheet with

variable wallothickness. In this study, they considered the thermal conductivity

of nanofluid and species molecular diffusion coefficient.
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1.2 Thesis Contribution

The key focus of theocurrent studyois tooperform the analysis for theoMHD stag-

nation point flow pastoa stretchingosheet inothe presenceoof chemicaloreaction and

species diffiuisivity variable. The effectsoof variousoparameters are examined on

temperature andoconcentration profiles. The governing partialodifferential equa-

tions areoformulated into setoof coupledoordinary differentialoequations by em-

ploying suitable similarityotransformations. Shooting method is utilized for the

solution of coupled ODEs. Solutions are illustrated by means of graphs.

1.3 Thesis Layout

This thesis is further structured into four chapters.

Chapter 2 comprises of some basic definitions and fundamental governing laws

of fluid dynamics that are useful for the understanding of the current study.

Chapter 3 is devoted to the detailed review of Nasir et al. [13]. It presents the

twoodimensional MHD stagnation pointoof nanofluidopast aostretching sheetowith

radiationoeffects.

Chapter 4 focuses on the extention of Nasir et al. [13] by the addition of species

diffusivity parameter and chemical reaction.

Chapter 5 summarizes the thesis and presents the main findings of the our work

as a whole, and suggests recommendations for prospective studies.

All the references used in this study are provided in the Bibliography.



Chapter 2

Preliminaries

The purpose of this chapter is to introduce some fundamental definitions, termi-

nologies and basic concepts of fluid. Some classical laws are also presented which

are inevitable for the problems of fluid dynamics.

2.1 Basic Definitions

This section is devoted to some basic definitions related to fluid dynamics. These

concepts are used to describe the flow, heat transfer and influence of thermophys-

ical properties that are used in next chapters.

Definition 2.1.1. [21]

“Fluid is a substance exists in three primary phases: solid, liquid, and gas. (At

very high temperatures, it also exists as plasma.) A substance in the liquid or

gas phase is referred to as a fluid. Distinction between a solid and a fluid is made

on the basis of the substances ability to resist an applied shear (or tangential)

stress that tends to change its shape. A solid can resist an applied shear stress

by deforming, whereas a fluid deforms continuously under the influence of shear

stress, no matter how small. In solids stress is proportional to strain, but in fluids,

stress is proportional to strain rate.”

5



Preliminarieso 6

Definition 2.1.2. [21]

“Fluid mechanics is defined as the science that deals with the behavior of fluids

at rest or in motion and the interaction of fluids with solid or other fluids at the

boundaries.”

Definition 2.1.3. [21]

“It is the study of the motion of liquids, gases and plasma from one place to

another. Fluid dynamics has a wide range of applications like calculating force

and moments on aircraft, mass flow rate of petroleum passing through pipelines,

prediction of weather, etc.”

Definition 2.1.4. [22]

“Fluid static is the part of fluid mechanics that deals with a fluid and its charac-

teristics at the constant position.”

Definition 2.1.5. [23]

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds, are usually referred as hydrody-

namics.”

Definition 2.1.6. [23]

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action.”

Definition 2.1.7. [23]

“A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles.

These fluids are engineered colloidal suspensions of nanoparticles in a base fluid.

The nanoparticles used in nanofluids are typically made of metals, oxides, carbides,

or carbon nanotubes.”

Common baseofluids includeowater, ethyleneoglycol andooil.

Definition 2.1.8. [24]

“It is a point in a flow field where the fluid velocity is zero. It exists at the surface

of objects in the field is brought to rest by the object. Static pressure is an example

of stagnation point.”
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2.2 Classification of Fluids

In this section, types of fluids are discussed which further help in understanding

of fluids nature.

Definition 2.2.1. [22]

“Ideal or perfect fluids are those fluids having viscosity equal to zero, i.e., µ = 0.

The nature of such fluids are fictitious and do not have shear forces.”

Definition 2.2.2. [22]

“Real or viscous fluids have non-zero viscosity, i.e., µ 6= 0.

Such fluids always possess non-zero viscosity and are either compressible or in-

compressible in nature. For example kerosene, petrol and castor oil etc.” Major

real fluid classes are termed as Newtonian fluids and non-Newtonian fluids.

Definition 2.2.3. [22]

“It is relationship in which shear stress is directly and linearly proportional to the

velocity gradient. Mathematically, it can be written as:

τxy ∝
(
du

dy

)
,

τxy = µ

(
du

dy

)
,

where

• µ = Dynamic viscosity,

• τxy = Shear stress exerted by the fluid,

• du
dy

= Velocity gradient perpendicular to the direction of the shear.”

Water, alcohol and glycerol etc, are the common examples of Newtonian fluid.

Definition 2.2.4. [22]

“The real fluids for which the shear stress of the fluid varies not linearly propor-

tional to the deformation rate(velocity gradient), are called non-Newtonian fluids.
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Mathematically it can be expressed as

τxy ∝ k

(
du

dy

)n
, n 6= 1

τxy = k

(
du

dy

)n
,

where

• k = Flow consistency coefficient,

• du
dy

= Shear rate,

• n = Flow behavior index.”

Paints,oblood,obiological fluidsoand polymer meltsoetc, are goodoexamples ofonon-

Newtonianofluids.

Definition 2.2.5. [25]

“It is a model of a non-Newtonian fluid that includes plasticity in addition to

viscosity and it was first presented in 1944. Eyring and Powell did some fitting

of measured data and came up with mathematical equation to represent the non-

Newtonian behavior of some class of materials with time dependent behavior that

depends on the rate of change of shear.”

2.3 Types of Flow

In this section, types of flow are discussed depending upon fluid properties.

Definition 2.3.1. [22]

“Flow is the deformation of the material under the influence of different forces.

If the deformation increase is continuous without any limit then the process is

known as flow.”

Definition 2.3.2. [22]

“When the velocity of flow does not change either in magnitude or in direction at

any point in a flowing fluid, for a given time, it is said to be a uniform flow. In

other words, it is the flow of a fluid in which each particle moves along its line
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of flow with constant speed and the cross section of each stream tube remains

unchanged.

Mathematically, it is represented as:

∂ V

∂L
= 0,

where V is velocity and L is length of cross sectional area.”

Definition 2.3.3. [22]

“When there is change in velocity of the flow at different points in a flowing fluid,

for a given time, it is said to be non-uniform flow. For example, the flow of

liquids under pressure through long pipelines of varying diameter is referred as

non-uniform flow.

Mathematically this can be written as:

∂V

∂L
6= 0.

where V is velocity and L is the displacement.”

Definition 2.3.4. [24]

“The flow bounded by a solid surface is known as an internal flow. An example of

the internal flow is the flow in pipe or duct.”

Definition 2.3.5. [24]

“The flow, which is not bounded by a solid surface, is known as an external flow.

An example of the external flow is the water- flow in the river or in the ocean.”

Definition 2.3.6. [22]

“The flow in which the material density varies during fluid flow is said to be com-

pressible flow. Compressible fluid flow is used in high-speed jet engines, aircraft,

rocket motors also in high-speed usage in a planetary atmosphere, gas pipelines

and in commercial fields.

Mathematically, it is expressed as:
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ρ(x,y,z,t) 6= k,

where ρ is the density and k is constant.”

Definition 2.3.7. [22]

“A flow is said to be incompressible if the density remains nearly constant. There-

fore, the volume of every portion of fluid remains unchanged over the course of its

motion when the flow (or the fluid) is incompressible.

Mathematical notation is as follow:

ρ(x,y,z,t) = k.”

Definition 2.3.8. [22]

“A flow in which the property of fluid flowing per second is constant. In other

words time independent flow is called steady flow.

Mathematical representation is given below:

∂τ

∂t
= 0,

where τ is any fluid property and t the time.”

Definition 2.3.9. [22]

“A flow in which the property of fluid flowing per second is not constant. In other

words time dependent flow is called unsteady flow.

Mathematical representation is given below:

∂τ

∂t
6= 0,

where τ be any fluid property and t the time.”

Definition 2.3.10. [21]

“Some flows are smooth and orderly while others are rather chaotic. The highly

ordered fluid motion characterized by smooth layers of fluid is called laminar.



Preliminarieso 11

The word laminar comes from the movement of adjacent fluid particles together

in laminates. The flow of high-viscosity fluids such as oils at low velocities is

typically laminar.”

Definition 2.3.11. [21]

“The highly disordered fluid motion that typically occurs at high velocities and is

characterized by velocity fluctuations is called turbulent. The flow of low-viscosity

fluids such as air at high velocities is typically turbulent.”

Definition 2.3.12. [21]

“When two fluid layers move relative to each other, a friction force develops be-

tween them and the slower layer tries to slow down the faster layer. This internal

resistance to flow is quantified by the fluid property viscosity, which is a measure

of internal stickiness of the fluid. Viscosity is caused by cohesive forces between

the molecules in liquids and by molecular collisions in gases. There is no fluid

with zero viscosity, and thus all fluid flows involve viscous effects to some degree.

Flows in which the frictional effects are significant are called viscous flows.”

Definition 2.3.13. [21]

“In many flows of practical interest, there are regions (typically regions not close

to solid surfaces) where viscous forces are negligibly small compared to inertial or

pressure forces. Neglecting the viscous terms in such inviscid flow regions greatly

simplifies the analysis without much loss in accuracy.”

2.4 Properties of Fluid

Following are the properties of fluids, depending upon the type of fluid.

Definition 2.4.1. [26]

“Density is defined as mass per unit volume. It is represented as ρ.

Assuming m be a mass of a fluid and V be the volume, then density is given as:

ρ =
m

V
.”
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Definition 2.4.2. [26]

“In shear stress a force is tending to cause deformation in a material or fluid. The

direction of force in this case is always parallel to the material.

Shear stress can be represented as η by following relation:

η =
F

A
.”

Definition 2.4.3. [26]

“Normal stress is the component of stress in which force acts perpendicular to the

unit surface area.”

Definition 2.4.4. [22]

“This is internal property of the fluid by virtue of which it offers resistance to the

flow. Mathematically viscosity is described as the ratio of the shear stress to the

rate of shear strain. i.e,

µ =
Shear stress

Rate of shear strain
.

In above expression µ is called the co-efficient of viscosity. This is also known as

the absolute viscosity or simply viscosity having dimensions

[
M

LT

]
.

Water is a thin fluid having low viscosity and on other hand honey is thick fluid

carrying higher viscosity. Usually liquids have non-zero viscosity.”

Definition 2.4.5. [22]

“Kinematic viscosity is the ratio of dynamic viscosity to density, a quantity in

which no force is involved. It can be obtained by dividing the absolute viscosity

of a fluid with the fluid mass density which can be mathematically expressed as:

ν =
µ

ρ
,

where ρ denote density and µ denote dynamic viscosity respectively.”

Definition 2.4.6. [26]

“A normal force F exerted by a fluid per unit area A is called pressure.
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Formulated as:

p =
F

A
.”

Definition 2.4.7. [26]

“Thermal conductivity k is the property of a material related to its ability to

transfer heat. Mathematically , it is given by:

k =
q∗∇L
S∇T

,

where q∗ is the heat passing through a surface area S and the effect of a temper-

ature difference ∇T over a distance is ∇L. Here L, S and ∇T are all assumed to

be of unit measurement.

The SI unit of thermal conductivity is
W

m.b
and its dimension is [MLT−1θ−1].”

Definition 2.4.8. [26]

“It is the ratio of the thermal conductivity of fluid or material to the specific heat

capacity of fluid or material.

Mathematical formulation is:

α =
k

ρCp
,

where

• k = Thermal conductivity of material,

• ρ = Density,

• Cp = Specific heat capacity.”

2.5 Properties of Heat Transfer in Fluid

This section provides some properties of heat transfer in fluid.

Definition 2.5.1. [22]

“It is the energy transfer due to the temperature difference. At the point when
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there is a temperature contrast in a medium or between media, heat transfer must

takes place. Heat transfer occurs when the temperature of objects are not equal

to each other and refers to how this difference is changed to an equilibrium state.”

Definition 2.5.2. [22]

“The flow of heat transfer through liquid or solid with rapid vibration between

neighboring molecules and atoms is called conduction. In other words motion of

free electrons moves from one atom to another is known as conduction. Mathe-

matically, it can be written as

q = −kA
(
4T
4n

)
,

where k denotes the constant of the thermal conductivity, A is the area and

(
4T
4n

)
denotes gradient of temperature respectively.” Foroexample

• After aocar isoturned on,othe engineois heatedoup. The hoodowill become

warmoas heat isoconducted fromothe engineoto the hood.

• Light bulbs gives off heat and if you touch one that is on, your hand will

get burned.

• Picking up a hot cup of tea.

Definition 2.5.3. [27]

“It is a mechanism in which heat transfer occurs due to the motion of molecules

within the fluid such as air and water. A mathematical expression for convection

phenomena is

q = hA(Tf − T∞),

where q, h, A, Tf and T∞ denote the the rate of convection heat transfer, heat

transfer coefficient, the area, the temperature of the surface and the temperature

away from the surface respectively.” For example:

• If meatois stillofrozen whenoit’s timeoto start ocooking, it willothat more

quickly whenoplaced under runningowater thanoif it isoimmersed in water.
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The reason is the convection, or movement of the water and its heat circu-

lation, will transfer heat more quickly into the frozen meat than if the meat

sits immersed in water and has to absorb heat energy through conduction.

Convection isofurther categorized asofree or natural, forced and mixed. An overview

is as written below:

Definition 2.5.4. [25]

“It is the process, in which heat transfer is caused by the temperature differences.

It effects the density of the fluids and the fluid motion is not developed by an

external source. It occurs only in the presence of gravitational force and also

known as free convection.” For example:

• Natural convectionocan create aonoticeable differenceoin temperature withinoa

home.oOften this becomesoplaces whereocertain partsoof the houseoare warmer

and certainoparts areocooler.

Definition 2.5.5. [25]

“It is the type of convection in which some external source is used too induced a

force on the fluid’s system for the transportation of heat. External source may be

a pump, fan or a suction device.”

For example:

• The sweat that our body produces is for effective heat transfer. So when the

fan is of, the air around us absorbs the water vapor until its saturated. After

that it stops and we start feeling more hot. So when we switch on the fan

the air around us starts moving, so the air never gets saturated completely

and hence the sweat keeps evaporating byoabsorbing ourobody heat andowe

feel cooler.

• Forced convectionocreates aomore uniformoand thereforeocomfortable tem-

perature throughout theoentire home. This reducesocold spots inothe house,
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reducing the needoto crank theothermostat tooa higherotemperature, or

puttingoon sweaters.

Definition 2.5.6. [25]

“When both natural and forced convection affect the heat transfer process at the

same time, then this mechanism is called mixed convection.” For example

• A fanoblowing upwardoon a hotoplate. Since heatonaturally rises,othe air

beingoforced upwardoover the plateoadds to theoheat transfer.

Definition 2.5.7. [27]

“Radiation is the energy transfer due to the release of photons or electromagnetic

waves from a surface volume. Radiation does not require any medium to transfer

heat. The energy produced by radiation is transformed by electromagnetic waves.

Mathematical formulation for this phenomenon is:

k = EσA[∆T ]4,

where

• E is the emissivity of the scheme,

• σ is the constant of Stephan-Boltzmann

(
5.670× 10−8

W

m2k4

)
,

• ∆T is the variation of the temperature,

• A is the area,

• k is the amount of heat transferred.”

Definition 2.5.8. [27]

“Mass transfer is the flow of molecules from one body to another when these

bodies are in contact or within a system consisting of two components when the

distribution of materials is not uniform. For example

• When copper plate is placed on steel plate, some molecules from either side

will diffuse into the other side. When salt is placed in a glass and water

poured over it,after sufficient time the salt molecules will diffuse into water

body. Usually mass transfer takes place from a location where the particular

component is proportionately low.”
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Definition 2.5.9. [27]

“The process by which heat is transferred from a body by virtue of its temperature,

without the aid of any intervening medium, is called thermal radiation. Sometimes

radiant energy is taken to be transported by electromagnetic waves while at other

times it is supposed to be transported by particle like photons. Radiation is found

to travel at the speed of light in vacuum. The term electromagnetic radiation

encompasses many types of radiation such as:

• Short wave radiation like gamma rays, x-rays and microwave.

• Long wave radiation like radio wave and thermal radiation.

The cause for the emission of each type of radiation is different. Thermal radiation

is emitted by a medium due to its temperature.”

Definition 2.5.10. [28]

“A boundary layer is a thin layer of viscous fluid close to the solid surface of a wall

in contact with a moving stream in which (within its thickness) the flow velocity

varies from zero at the wall (where the flow sticks to the wall because of its vis-

cosity) up to the start of free stream at the boundary. The fundamental concept

of the boundary layer was suggested by L.Prandtl (1904).

In spite of its relative thinness, the boundary layer is very important for initiating

processes of dynamic interaction between the flow and the body. The boundary

layer determines the aerodynamic drag and lift of the flying vehicle, or the energy

loss for fluid flow in channels (in this case, a hydrodynamic boundary layer be-

cause there is also a thermal boundary layer which determines the thermodynamic

interaction of heat transfer).”

2.6 Generalized Governing Laws and Equations

for Fluid Motion

In this section some basic laws are discussed which are necessary for the further

discussion. In later part of this section generalized equations such as continuity

equation, momentum equation and energy equation are presented.[21, 22]
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“Several conservation laws such as the laws of conservation of mass, conservation of

energy and conservation of momentum are of great use for the research community.

Historically, the conservation laws were first applied to a fixed quantity of matter

called a closed system or just a system, and then extended to regions in space called

control volumes. The conservation relations are also called balance equations since

any conserved quantity must balance during a process.”

Definition 2.6.1. This law states that

“The mass inside a system is conserved and does not change. i.e.

Dm

Dt
= 0,

where m is the mass of fluid flowing in system or control volume.”

Definition 2.6.2. “In the conservation of mass of fluid entering and leaving the

control volume, the resulting mass balance is called the equation of continuity.

This equation reflects the fact that mass is conserved. For any fluid, conservation

of mass is expressed by scalar equation:

∂ρ

∂t
+∇ · (ρV) = 0. (2.1)

For the steady flow (2.1) can be written as:

∇ · (ρV) = 0. (2.2)

For incompressible flow, (2.2) becomes:

∇ ·V = 0. (2.3)

For incompressible and irrotational flow, the (2.3) is transformed in terms of ve-

locity potential φ, which is given by:

∇2φ = 0. (2.4)

(2.4) is known as Laplace equation.”
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Definition 2.6.3. “The product of the mass and the velocity of a body is called

the linear momentum or just the momentum of the body, and the momentum of a

rigid body of mass m moving with a velocity
−→
V is m

−→
V . Newtons second law states

that the acceleration of a body is proportional to the net force acting on it and is

inversely proportional to its mass, and that the rate of change of the momentum

of a body is equal to the net force acting on the body. Therefore, the momentum

of a system remains constant when the net force acting on it is zero, and thus the

momentum of such systems is conserved. This is known as the conservation of

momentum principle.”

Definition 2.6.4. “Each particle of fluid obeys Newtons second law of motion

which is at rest or in steady state or accelerated motion. This law states that the

combination of all applied external forces acting on a body is equal to the time

rate of change of linear momentum of the body. In vector notation this law can

be written as:

ρ
DV

Dt
= ∇ · τ + ρb,

for Navier-Stokes equation

τ = −ρI + µA1

where A1 is the tensor and first time it was presented by Rivlin-Erickson.

A1 = gradV + (gradV)t

In the above equations, d
dt

denote material time derivative or total derivative, ρ

denote density, V denote velocity field, τ the Cauchy stress tensor, b the body

forces, p the pressure, µ the dynamic viscosity.

The Cauchy stress tensor is expressed in the matrix form

τ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz
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where σxx, σyy and σzz are normal stresses, others wise the shear stresses. For

two-dimensional flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

gradV =


∂u

∂x

∂v

∂x
0

∂u

∂y

∂v

∂y
0

0 0 0

 ,

(gradV)t =


∂u

∂x

∂u

∂y
0

∂v

∂x

∂v

∂y
0

0 0 0

 .
Hence it can be easily seen that

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ v

(
∂2u

∂x2
+
∂2u

∂y2

)

Similarly, we repeat the above process for y-component as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ v

(
∂2v

∂x2
+
∂2v

∂y2

)
.”

Definition 2.6.5. First lawoof thermodynamicsostates that:

“The variation in internal energy E of a system during any transformation is equal

to the amount of energy that system receives from the environment and the work

done by the system.

Mathematically, it is written as:

∆E = Q − W,

where

• ∆E is change in internal energy,

• Q is heat added to the system,

• W is work done by the system.”
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Definition 2.6.6. “Energy can be transferred to or from a closed system by heat

or work, and the conservation of energy principle requires that the net energy

transfer to or from a system during a process be equal to the change in energy

content of the system. control volume involves energy transfer via mass flow also,

and the conservation of energy principle, also called energy balance, is expressed

as:

Ein − Eout =
dECV

dt
,

where Ein and Eout are the total rates of energy transfer into and out of the control

volume, respectively, and dECV /dt is the rate of change of energy within the

control volume boundaries. In fluid mechanics, we usually limit our consideration

to mechanical forms of energy only.”

2.7 Dimensionless Parameters

Definition 2.7.1. [29]

“The Prandtl number which is a dimensionless number, named after the German

physicist Ludwig Prandtl, is defined as:

Pr =
ν

α
=

µ/ρ

k/ρCp
=
µCp
k
,

where

• ν is the kinematic viscosity,

• α denotes the thermal diffusivity.

This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. It characterizes the physical properties of a fluid with con-

vective and diffusive heat transfers. It describes, for example, the phenomena

connected with the energy transfer in a boundary layer. It expresses the degree of

similarity between velocity and diffusive thermal fields or, alternatively, between

hydrodynamic and thermal boundary layers.”
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Definition 2.7.2. [22]

“Skin friction coefficient occurs between the fluid and the solid surface which leads

to slow down the motion of the fluid. The skin friction coefficient can be defined

as:

Cf =
2τw
ρU2

,

where

• τw is the wall shear stress,

• ρ is the density,

• U is the free-stream velocity.

It expresses the dynamic friction resistance originating in viscous fluid flow around

a fixed wall.”

Definition 2.7.3. [29]

“The Lewis Number Le is defined as the ratio of the Schmidt Number Sc and the

Prandtl Number Pr. The Lewis Number is also the ratio of thermal diffusivity

and molecular diffusivity as is found from the definitions of Schmidt and Prandtl

Number, as follows:

Le =
Sc

Pr
.

The Lewis Number is important in determining the relationship between mass and

heat transfer coefficients.”

Definition 2.7.4. [22]

“It is a dimensionless number which is used to clarify the different flow behaviors

like turbulent or laminar flow. It helps to measure the ratio between inertial force

and the viscous force.

Mathematically expressed as

Re =

ρU2

L
µU

L2

⇒ Re =
LU

ν
,
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where U denotes the velocity of the fluid with respect to object, L the characteris-

tics length. At low Reynolds number, laminar flow arises where the viscous forces

are dominant. At high Reynolds number, Turbulent flow arises where the inertial

forces are dominant.”

Definition 2.7.5. [29]

“Biot number expresses the ratio of the heat flow transferred by convection on a

body surface to the heat flow transferred by conduction in a body.The criterion

was first introduced by French physicist, Jean-Baptiste Biot. Mathematically it

can be expressed as

Bi =
hhL

k
,

where

• hh is heat transfer coefficient,

• L denotes the characteristic length,

• k is the thermal conductivity.

Biot number shows how convection and conduction heat transfer phenomena are

related. Small values of this number shows that the conduction is the main heat

transfer method, while high values of this number indicates that the convection

is the main heat transfer mechanism. Biot number arises when we use third kind

of boundary condition (i.e convective heat transfer in presence of external fluid

surface).”

Definition 2.7.6. [29]

“It is a dimensionless number, first introduced by a German engineer Ernst Kraft

Wilhelm Nusselt and is defined as:

Nu =
αL

k
,

where

• α represents the heat transfer coefficient,

• L denotes the characteristic length,

• k is the thermal conductivity.
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It expresses the ratio of the total heat transfer in a system to the heat transfer

by conduction. In characterizes the heat transfer by convection between a fluid

and the environment close to it or, alternatively, the connection between the heat

transfer intensity and the temperature field in a flow boundary layer. It expresses

the dimensionless thermal transference. The physical significance is based on the

idea of a fluid boundary layer in which the heat is transferred by conduction. If it

is not so, the criterion loses its significance.”

Definition 2.7.7. [29]

“It is the ratio between viscosity υ and molecular diffusion D.It is denoted by Sc.

Mathematical form can be written as:

Sc =
υ

D
,

where

• υ is the kinematic viscosity,

• D is the mass diffusivity.”



Chapter 3

MHD Stagnation-point Flowoof

aoNanofluid Past a Stretching

Sheet withoRadiation Effects

3.1 Introduction

In this chapter, we discussed a detail review of Nasir et. al.[13]. Here we rein-

vestigated the governing laws and equations which are helpful in the analysis of

forced heat convection over stretching sheet inothe presence of magnetic field.

Similarityotransformations areoused to reduceothe governing partialodifferential

equationointo set of non-linear ordinaryodifferential equation. These equations

areothen solvedonumerically using shooting method which followed by the ap-

plication of RK-4 method and further by utilizing MATLAB tool. At last, the

numerical resultsoare discussedofor different physicaloparameters causing impact

on the heat andomass transfer ofothe flow. Graphs are represented to show the

physical significance of distinct dimensionless quantities.

25
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3.2 MathematicaloFormulation

In theopresent chapter, we assume a steady twoodimensional MHD boundary

layeroflow of aonanofluid pastoa stretchingosurface with othe velocityouw(x) =

λUw(x), where λ isothe constantostretching parameterowith λ > 0 for a stretch-

ingosurface, as shown in FIGURE 3.1, stretching surface is measured along x-axis.

The flow takesoplace atoy ≥ 0,owhere y isothe coordinate measured normaloto

the stretchingosurface.

Figure 3.1: Geometry of Physical Model for Stretching Sheet.

It isoassumed that ue(x) the velocityoof the far field and theobottom surface

of theosheet isoheated by mean of convection heating, from aohot fluidoat con-

stantotemperature Tf . T∞ denotes the constant surface temperature and C∞ rep-

resents concentration of the sheet. Further itois assumedothat the constantomass

velocityois v0 withov0 < 0 for suctionoand the flow isosubjected tooa constant

transverseomagnetic field of constant strengthoB0, which is supposed to be ap-

plied in the positive y-direction, normal to the surface. The applied magnetic

fieldois assumed to be greater as comparedoto the induced magneticofield, so in-

duced magnetic field is neglected. The baseofluid and suspended nanoparticles
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areoin thermal equilibrium [30, 31].

Under the boundary layer assumptions,othe basic unsteady equations can be writ-

ten in theoCartesian coordinates asofollows:

∂u

∂x
+

∂v

∂y
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ ν
∂2u

∂y2
+

σB2
0

ρ
(ue − u), (3.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

∂2T

∂y2
+ β

[
DB

∂C

∂y

∂T

∂y
+

DT

T∞

(
∂T

∂y

)2]
− 1

ρ

∂qr
∂y

, (3.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
, (3.4)

along with the initial and boundary conditions

t < 0 : u = 0, v = 0, T = T∞, C = C∞ for any x, y

t ≥ 0 : uw(x) = λUw(x), v = v0, − k
∂T

∂y
= hf (Tw − T ),

DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0,

u→ ue(x), T → T∞, C → C∞ as y →∞,


(3.5)

whereou and v areothe velocityocomponents alongox and y axis, respectively, t is

the time, T is theonanofluid temperature, C isothe nanoparticleovolume fraction,

αf is the thermal diffusivity of the nanofluid, ν isothe kinematicoviscosity ofothe

fluid, ρ is the density, k isothe thermaloconductivity, σ is the electrical conductiv-

ity, DBois theoBrownian diffusionocoefficient, DT isothe thermophoreticodiffusion

coefficient,oβ is defined as β =
(ρcp)p
(ρcp)f

, where (ρcp)p is the effectiveoheat capac-

ityoof the nanoparticleomaterial and (ρcp)f is the heat capacityoof fluid and we

also assumes that Uw(x) = ax and ue(x) = ax withoa a positiveoconstant. The

boundaryocondition

DB
∂C

∂y
+

(
DT

T∞

)
∂T

∂y
= 0, at y = 0.

In (3.5), it is considered that the thermophoresis and the normal flux of nanopar-

ticles is zero at the boundary [32].
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Using Rosselandoapproximation fororadiation [33], weohave

qr = − 4σ∗T 4
∞

3k∗
∂T

∂y
(3.6)

For smallerovalue of temperatureocontrast, the temperatureodifference T 4 might

beoexpanded aboutoT∞ usingoTaylor series,oas follows:

T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1 +

12T 2
∞

2!
(T − T∞)2 +

24T∞
3!

(T − T∞)3 + · · · ,

excluding the higher order terms, we get:

T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1.

Then,
∂T 4

∂y
= 4T 3

∞
∂T

∂y
. (3.7)

Using (3.6) and (3.7), then differentiating with respect to y, we get

∂qr
∂y

= − 16σ∗T 3
∞

3k∗
∂2T

∂y2
, (3.8)

whereoσ∗ represents theoStefan Boltzmann constantoand k∗ denotes the mean

absorptionocoefficient. Thus (3.3) canobe written as:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

(
1 +

4

3
Nr

)
∂2T

∂y2
+ β

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2]
(3.9)

with Nr = (1 + 4σ∗T 3
∞/kk

∗) being the radiation parameter. Following similarity

transformations are being considered [8]

• u = axf ′(η), • v = −√aαff(η),

•θ(η) =
(T − T∞)

(Tw − T∞)
, • φ(η) =

(C − C∞)

(Cw − C∞)
,

• η =

√
a

αf
y.


(3.10)
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The detailed procedure of conversion of partial differential equations from (3.1)-

(3.4) into non-dimensional ordinary differential equation is as follows:

• ∂η

∂x
=
∂(η)

∂x

=
∂

∂x

(√
a

αf
y

)
=

√
a

αf

(
∂y

∂x

)
=

√
a

αf
(0)

= 0.

• ∂η

∂y
=
∂(η)

∂y

=
∂

∂y

(√
a

αf
y

)
=

√
a

αf

(
∂y

∂y

)
=

√
a

αf
(1)

=

√
a

αf
.

• ∂η

∂t
=
∂(η)

∂x

=
∂

∂t

(√
a

αf
y

)
=

√
a

αf

(
∂y

∂t

)
=

√
a

αf
(0)

= 0.

• ∂u

∂x
=

∂

∂x
(ax f ′(η))

= a

(
∂

∂x
(x f ′(η))

)
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= a

(
∂x

∂x
f ′(η) + x

∂f ′(η)

∂x

)
= a

(
(1)f ′(η) + x f ′′(η) · ∂η

∂x

)
= a

(
f ′(η) + x f ′′(η) · (0)

)
= a f ′(η).

• ∂u

∂y
=

∂

∂y
(ax f ′(η))

= a

(
∂

∂y
(x f ′(η))

)
= a

(
∂x

∂y
f ′(η) + x

∂

∂y
(f ′(η))

)
= a

(
(0)f ′(η) + x f ′′(η) · ∂η

∂y

)
= ax

√
a

αf
f ′′(η).

• ∂v

∂x
=

∂

∂x
(−√aαf f ′(η))

= −√aαf
∂

∂x
(f ′(η))

= −√aαf f ′′(η)

(
∂η

∂x

)
= −√aαf f ′′(η) (0)

= 0.

• ∂v

∂y
=

∂

∂y
(−√aαf f ′(η))

= −√aαf
∂

∂y
(f ′(η))

= −√aαf f ′′(η)

(
∂η

∂y

)
= −√aαf f ′′

(√
a

αf

)
= −√aαf

(√
a

αf

)
f ′′(η)

= −a f ′′(η).
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The equation of continuity (3.1) is satisfied as follows:

⇒ ∂u

∂x
+

∂v

∂y
= af ′ − af ′

= 0.

To convert (3.2) into dimensionless form, the following partial derivatives are con-

verted into ordinary derivatives:

• u
∂u

∂x
= (axf ′(η))(af ′(η))

= a2xf ′
2

(η).

• v
∂u

∂y
= (−√aαff)

(
ax

√
a

αf
f ′′(η)

)
= −ax

(√
a · a · αf
αf

)
(f(η) f ′′(η))

= −ax (
√
a2)(f(η) f ′′(η))

= −a2x f(η)f ′′(η).

• ue = ax.

• due
dx

=
d

dx
(ax)

= a
∂x

∂x

= a (1)

= a.

• ue
due
dx

= (ax)(a)

= a2x.

• ∂2u

∂y2
=

∂

∂y

(
ax

√
a

αf
f ′′(η)

)
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= a

√
a

αf

∂

∂y
(xf ′′(η))

= a

√
a

αf

(
∂x

∂y
f ′′(η) + x

∂

∂y
(f ′′(η))

)
= a

√
a

αf

(
(0)f ′′(η) + x f ′′′(η) · ∂η

∂y

)
= a

√
a

αf

(
x

√
a

αf
f ′′′(η)

)
= ax

(
a

αf

)
f ′′′

=
a2x

αf
f ′′′(η).

• ν
∂2u

∂y2
= ν

a2x

αf
f ′′′(η).

• (ue − u) = (ax− axf ′(η))

= ax(1− f ′(η)).

• σB
2
0

ρ
(ue − u) =

σB2
0

ρ
(ax(1− f ′(η))).

By using above derivatives, dimensionless form of the L.H.S of (3.2) becomes:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ( 0 ) + ( a2xf ′

2

(η) ) + ( − a2x f(η)f ′′(η) )

= a2xf ′
2

(η)− a2x f(η)f ′′(η)

= a2x(f ′
2

(η)− f(η)f ′′(η)).

Likewise the R.H.S is as follows:

ue
due
dx

+ ν
∂2u

∂y2
+

σB2
0

ρ
(ue − u) = a2x+ ν

a2x

αf
f ′′′(η) +

σB2
0

ρ
(ax(1− f ′(η)))

= a2x

(
1 +

ν

αf
f ′′′(η) +

σB2
0

aρ
((1− f ′(η)))

)
= a2x(1 + Prf ′′′(η) +M(1− f ′(η)))). (3.11)
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Now finally the dimensionless form of (3.2) is:

⇒ a2x(f ′
2

(η)− f(η)f ′′(η)) = a2x(1 + Prf ′′′(η) +M(1− f ′(η)))

⇒ f ′
2

(η)− f(η)f ′′(η) = 1 + Prf ′′′(η) +M(1− f ′(η))

⇒ Prf ′′′(η) + f(η)f ′′(η) +M(1− f ′(η)) + 1− f ′2(η) = 0.

To convert the temperature equation (3.9) into an ordinary differential equation,

we first calculate the following derivatives:

• θ(η) =
(T − T∞)

(Tw − T∞)
.

• T = T∞ + (Tw + T∞) θ(η).

• ∂T

∂t
=

∂

∂t
( T∞ + (Tw + T∞) θ(η) )

=
∂

∂t
( T∞ ) +

∂

∂t
((Tw + T∞) θ(η) )

= (0) + (Tw − T∞)
∂

∂t
(θ(η) )

= (Tw − T∞) θ′(η)

(
∂η

∂t

)
= (Tw − T∞) θ′(η) (0)

= 0.

• ∂T

∂x
=

∂

∂x
( T∞ + (Tw + T∞) θ(η) )

=
∂

∂x
( T∞ ) +

∂

∂x
((Tw + T∞) θ(η) )

= (0) + (Tw − T∞)
∂

∂x
(θ(η) )

= (Tw − T∞) θ′(η)

(
∂η

∂x

)
= (Tw − T∞) θ′(η) (0)

= 0.
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• u
∂T

∂x
= (axf ′(η))

∂

∂x
( T∞ + (Tw + T∞) θ(η) )

= (axf ′(η))(0)

= 0.

• ∂T

∂y
=

∂

∂y
( T∞ + (Tw + T∞) θ(η) )

=
∂

∂y
( T∞ ) +

∂

∂y
((Tw + T∞) θ(η) )

= (0) + (Tw − T∞)
∂

∂y
(θ(η) )

= (Tw − T∞) θ′(η)

(
∂η

∂y

)
= (Tw − T∞) θ′(η)

(√
a

αf

)
= (Tw − T∞)

(√
a

αf

)
θ′(η).

• v
∂T

∂y
= (−√aαff(η))

∂

∂y
( T∞ + (Tw + T∞) θ(η) )

= −√aαff(η)

(√
a

αf
(Tw − T∞)θ′(η)

)
= −

(
√
aαf

√
a

αf

)
f(η)(Tw − T∞)θ′(η)

=

(√
a2αf
αf

)
(Tw − T∞)f(η)θ′(η)

= −a(Tw − T∞)f(η)θ′(η).

• ∂
2T

∂y2
=

∂

∂y

(
(Tw − T∞)

(√
a

αf

)
θ′(η)

)
= (Tw − T∞)

(√
a

αf

)
∂

∂y
(θ′(η) )

= (Tw − T∞)

(√
a

αf

)
θ′′(η)

(
∂η

∂y

)
= (Tw − T∞)

(√
a

αf

)
θ′′(η)

(√
a

αf

)
=

a

αf
(Tw − T∞) θ′′.
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•
(
∂T

∂y

)2

=

(
(Tw − T∞)

(√
a

αf

)
) θ′(η)

)2

= (Tw − T∞)2
( √

a

αf

)2

(θ′(η))2

=
a

αf
(Tw − T∞)2 θ′

2

(η).

• φ(η) =
(C − C∞)

(Cw − C∞)
.

• ∂C

∂y
=

∂

∂y
( C∞ + (Cw + C∞) φ(η) )

=
∂

∂y
( C∞ ) +

∂

∂y
((Cw + C∞) φ(η) )

= (0) + (Cw − C∞)
∂

∂y
(φ(η) )

= (Cw − C∞) φ′(η)

(
∂η

∂y

)
= (Cw − C∞) φ′(η)

(√
a

αf

)
= (Cw − C∞)

(√
a

αf

)
φ′(η).

Now using the above derivatives, L.H.S of (3.9) is processed as follows:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= (0) + (0)−√aαff(η)

(√
a

αf
(Tw − T∞)θ′(η)

)
= −a(Tw − T∞)f(η)θ′(η). (3.12)

Similarly R.H.S of (3.9), can be formulated as:

αf

(
1 +

4

3
Nr

)
∂2T

∂y2
+β

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2]
= αf

(
1 +

4

3
Nr

)(
a

αf

)
(Tw − T∞)θ′′(η) + β

[
DB

(
a

αf

)
(Tw−

T∞)(Cw − C∞)φ′(η)θ′(η) +
DT

T∞

(
a

αf

)
(Tw − T∞)2θ′

2

(η)

]
= a

(
1 +

4

3
Nr

)
(Tw − T∞)θ′′(η) + β

(
a

αf

)[
DB(Tw − T∞)



MHD Stagnation-point Flowoof aoNanofluid... 36

(Cw − C∞)φ′(η)θ′(η) +
DT

T∞
(Tw − T∞)2θ′

2

(η)

]
= a(Tw − T∞)

[(
1 +

4

3
Nr

)
θ′′(η) +

βDB

αf
(Cw − C∞)θ′(η)φ′(η)

+
βDT

T∞αf
(Tw − T∞)θ′2

]
. (3.13)

From (3.12) and( 3.13) we get:

⇒ − a(Tw − T∞)f(η)θ′(η) = a(Tw − T∞)

[(
1 +

4

3
Nr

)
θ′′(η) +

βDB

αf
(Cw−

C∞)θ′(η)φ′(η) +
βDT

T∞αf
(Tw − T∞)θ′2(η)

]
⇒ − f(η)θ′(η) =

(
1 +

4

3
Nr

)
θ′′(η) +

βDB

αf
(Cw − C∞)θ′(η)

φ′(η) +
βDT

T∞αf
(Tw − T∞)θ′2(η)

⇒
(

1 +
4

3
Nr

)
θ′′(η) +Nbθ′(η)φ′(η) +Ntθ′2(η) + f(η)θ′(η) = 0.

The dimensionless quantities used in the above equation are formulated as:

Nb =
βDB(Cw − C∞)

αf
,

Nt =
βDT (Tw − T∞)

T∞αf
.

The following procedure elaborates the conversion of concentration equation (3.4)

into the dimensionless form:

• ∂C

∂t
=

∂

∂t
( C∞ + (Cw + C∞) φ(η) )

=
∂

∂t
( C∞ ) +

∂

∂t
((Cw + C∞) φ(η) )

= (0) + (Cw − C∞)
∂

∂t
(φ(η) )

= (Cw − C∞) φ′(η)

(
∂η

∂t

)
= (Cw − C∞) φ′(η) (0)

= 0.
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• ∂C

∂x
=

∂

∂x
( C∞ + (Cw + C∞) φ(η) )

=
∂

∂x
( C∞ ) +

∂

∂x
((Cw + C∞) φ(η) )

= (0) + (Cw − C∞)
∂

∂x
(φ(η) )

= (Cw − C∞) φ′(η)

(
∂η

∂x

)
= (Cw − C∞) φ′(η) (0)

= 0.

• u∂C
∂x

= (axf ′(η))
∂

∂x
( C∞ + (Cw + C∞) φ(η) )

= (axf ′(η))(0)

= 0.

• v∂C
∂y

= (−√aαff(η))
∂

∂y
( C∞ + (Cw + C∞) φ(η) )

= −√aαff(η)

(√
a

αf
(Cw − C∞)φ′(η)

)
= −

(
√
aαf

√
a

αf

)
f(η)(Cw − C∞)φ′(η)

=

(√
a2αf
αf

)
(Cw − C∞)f(η)φ′(η)

= −a(Cw − C∞)f(η)φ′(η).

• ∂
2C

∂y2
=

∂

∂y

(
(Cw − C∞)

(√
a

αf

)
φ′(η)

)
= (Cw − C∞)

(√
a

αf

)
∂

∂y
(φ′(η) )

= (Cw − C∞)

(√
a

αf

)
φ′′(η)

(
∂η

∂y

)
= (Cw − C∞)

(√
a

αf

)
φ′′(η)

(√
a

αf

)
=

a

αf
(Cw − C∞) φ′′.
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Now, (3.4) can be reformulated by using above derivatives :

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= 0 + (axf ′(η))(0) + (−a(Cw − C∞)f(η)φ′(η))

= 0− a(Cw − C∞)f(η)φ′(η))

= −a(Cw − C∞)f(η)φ′(η).

DB
∂2C

∂y2
+

DT

T∞

∂2T

∂y2
=
DB a

αf
(Cw − C∞)φ′′(η) +

DT a

T∞ αf
(Tw − T∞)θ′′(η)

=
DB a

αf
(Cw − C∞)

[
φ′′(η) +

DT

T∞ DB

(Tw − T∞)

(Cw − C∞)
θ′′(η)

]
=
DB a

αf
(Cw − C∞)

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
.

Combining the above L.H.S and R.H.S of (3.4):

⇒ −a(Cw − C∞)f(η)φ′(η) =
DB a

αf
(Cw − C∞)

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
⇒ − f(η)φ′(η) =

DB

αf

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
⇒ − DB

αf
f(η)φ′(η) = φ′′(η) +

Nt

Nb
θ′′(η)

⇒ −Lef(η)φ′(η) = φ′′(η) +
Nt

Nb
θ′′(η)

⇒ φ′′(η) + Lef(η)φ′(η) +
Nt

Nb
θ′′(η) = 0.

Following parameters are used in expression of momentum equation and concen-

tration equation:

Pr =
ν

αf
, M =

σB2
0

aρ
, Le =

αf
DB

.

The procedure of converting boundary conditions into dimensionless form has been

discussed below:

• v(x, y) = v0 at y = 0.

−√aαff(η) = v0 at η = 0.

f(η) = − v0√
aαf

at η = 0.
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⇒ f(η) = S.

• u(x, y) = uw(x, y) = λUw(x, y) at y = 0.

ax f ′(η) = λ ax at η = 0.

⇒ f ′(η) = λ.

• − k∂T
∂y

= hf (Tw − T ) at y = 0.

−k
√

a

αf
(Tw − T∞)θ′(η) = hf [Tw − (Tw − T∞)θ(η)− T∞] at η = 0.

−k
√

a

αf
(Tw − T∞)θ′(η) = hf (Tw − T∞)(1− θ(0)) at η = 0.

−k
√

a

αf
θ′(η) = hf [1− θ(0)] at η = 0.

θ′(η) = −hf
k

√
αf
a

[1− θ(0)] at η = 0.

⇒ θ′(η) = −Bi[1− θ(0)]. ∵

(
Bi =

hf
k

√
αf
a

)

• DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0.

DB

√
a

αf
(Cw − C∞)φ′(η) +

DT

T∞

√
a

αf
(Tw − T∞)θ′(η) = 0 at η = 0.

Multiplying both sides by β
√

a
αf

then taking common α and divide on the right

hand side, we get:

βDB

√
a

αf

2

(Cw − C∞)φ′(η) + β
DT

T∞

√
a

αf

2

(Tw − T∞)θ′(η) = 0

(
β

√
a

αf

)
at η = 0.

βDB
a

αf
(Cw − C∞)φ′(η) + β

DT

T∞

a

αf
(Tw − T∞)θ′(η) = 0 at η = 0.

a

[
βDB(Cw − C∞)

αf
φ′(η) +

βDT (Tw − T∞)

T∞αf
θ′(η)

]
= 0 at η = 0.

βDB(Cw − C∞)

αf
φ′(η) +

βDT (Tw − T∞)

T∞αf
θ′(η) = 0 at η = 0.

⇒ Nbφ′(η) +Ntθ′(η) = 0.
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• u(x, y) → ue(x) as y → ∞.

ax f(η) → ax as η → ∞.

⇒ f(η) → 1.

• T → T∞ as y → ∞.

(Tw − T∞)θ(η) + T∞ → T∞ as η → ∞.

(Tw − T∞)φ(η) → T∞ − T∞ as η → ∞.

(Tw − T∞)θ(η) → 0 as η → ∞.

⇒ θ(η) → 0.

• C → C∞ as y → ∞.

(Cw − C∞)φ(η) + T∞ → C∞ as η → ∞.

(Cw − C∞)φ(η) → C∞ − C∞ as η → ∞.

(Cw − C∞)φ(η) → 0 as η → ∞.

⇒ φ(η) → 0.

Thus finally, following set of dimensionless ODEs is obtained:

Prf ′′′(η) + f(η)f ′′(η) +M(1− f ′(η)) + 1− f ′2(η) = 0. (3.14)(
1 +

4

3
Nr

)
θ′′(η) +Nbθ′(η)φ′(η) +Ntθ′2(η) + f(η)θ′(η) = 0. (3.15)

φ′′(η) + Lef(η)φ′(η) +
Nt

Nb
θ′′(η) = 0. (3.16)

The transformedoboundary conditionsoare as follows:

for η = 0

f(η) = S, f ′(η) = λ,

θ′(η) = −Bi[1− θ(0)], Nbφ′(η) +Ntθ′(η) = 0,

f(η) → 1, θ(η) → 0, φ(η) → 0 as η → ∞.


(3.17)
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The physicaloquantities of practical interest areothe skinofriction coefficientoCf

and localoNusselt number Nux, which areodefined as

Cf =
τw
ρU2

w

,

Nux =
xqw

k(Tf − T∞)
,

 (3.18)

where τw is the surfaceoshear stress and qw is the surface heat flux, which are

repectively given by:

τw = µ

(
∂u

∂y

)
y=0

,

qw = −k
(
∂T

∂y

)
y=0

.

 (3.19)

Following steps are carried out for the conversion of (3.18) into dimensionless form,

by using the transformation (3.19)

• τw = µ

(
∂u

∂y

)
y=0

= µ

(
ax

√
a

αf
f ′′(η)

)
y=0

⇒ = µ

(
ax

√
a

αf
f ′′(0)

)
(3.20)

• qw = −k
(
∂T

∂y

)
y=0

= −k
(√

a

αf
(Tf − T∞)θ′(η)

)
y=0

= −k
(√

a

αf
(Tf − T∞)θ′(0)

)
(3.21)
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Using (3.20) and (3.21) in (3.18), we gets:

• Cf =
τw
ρU2

w

=

µ

(
ax
√

a
αf

f ′′(0)

)
ρU2

w

=
µax

ρU2
w

√
a

αf
f ′′(0)

=
µ

ρUw

√
a

αf
f ′′(0)

=
µ

ρax

√
a

αf
f ′′(0)

=
ν

a

√
αf

Uw(x)x
f ′′(0)

= Rex
− 1

2Pr f ′′(0)

⇒ Re
1
2
xPr

−1 Cf = f ′′(0). (3.22)

• Nux =
xqw

k(Tf − T∞)

=

−xk
(√

a
αf

(Tf − T∞)θ′(0)

)
k(Tf − T∞)

= −x
√

a

αf
θ′(η)

= −Rex
1
2 θ′(η)

⇒ Rex
− 1

2 Nux = −θ′(η). (3.23)

Where

Rex = Uw(x)x/αf is a local Reynoldsonumber,

Uw(x) = a x.

3.3 SolutionoMethodology

To obtainothe numericalosolution for the system of ordinary differential equations

(3.14) − (3.16) subject to boundary conditions (3.17), shooting method is used.
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Initially, the momentum equation (3.14) is solved independently then the results

of f are utilized in coupled equations (3.15) and (3.16). Following notations have

been considered for further procedure:

f = y1,

f ′ = y′1 = y2,

f ′′ = y′′1 = y′2 = y3,

f ′′′ = y′′′1 = y′′2 = y′3.

Following system of ODE’s is obtained by using above notations in equation(3.14):

y′1 = y2, y1(0) = S,

y′2 = y3, y2(0) = λ,

y′3 =
1

Pr

[
y22 − y1 y3 −M(1− y2)− 1

]
, y3(0) = r.


(3.24)

In orderoto achieve approximateonumerical results, (3.24) is solved by RK-4 method.

The domain of our problem is considered to be bounded i.e. [0, η∞], where η∞ is

a positive number and for which the variation inothe solution is negligible after

η = η∞. r is assumed as missing condition for the solution of (3.24) such that:

y2(η, r) = 1,

y2(η, r)− 1 = 0. (3.25)

Newton’s method is applied to get the refined initial guess for the missing condi-

tion r which then further utilized for the solution of the algebraic equation (3.25),

following iterative scheme is purposed:

r(i+1) = r(i) −
((

∂y2
∂r

)−1
(y2(η, r)− 1)

)
(η(i),r(i),η∞)
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To incorporate Newton’s method, we further use the following notations:

∂y1
∂r

= y4,
∂y2
∂r

= y5,
∂y3
∂r

= y6

}
” (3.26)

As a result of these new notations, the Newton’s iterative scheme gets the form:

r(i+1) = r(i) −
((

∂y5
∂r

)−1
(y2(η, r)− 1)

)
(η(i),r(i),η∞)

,

where i isothe number of iterations (i = 0, 1, 2, 3...).

Now differentiating the system of three first order ODEs (3.24) with respect to r,

we get another system of ODEs, of first order. Hence following system of IVPs is

obtained:

y′1 =y2, y1(0) = S,

y′2 =y3, y2(0) = λ,

y′3 =
1

Pr

(
y22 − y1y3 −M(1− y2)− 1

)
, y3(0) = r,

y′4 =y5, y4(0) = 0,

y′5 =y6, y5(0) = 0,

y′6 =− 1

Pr

(
2y2y5 − y1y6 − y4y3 +My5

)
, y(0) = 1.

The required stopping criteriaofor shootingomethod isoset as follows

|y2(η, r)− 1| < ε,

where ε is finitely small positive number up to 10−10.

For the numerical solution of (3.15) and (3.16), the missing initial condition for

θ(0) is denoted by l and for φ(0) is represented by m. Through the following
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notations have been taken into account.

θ = h1, θ′ = h′1 = h2, θ′′ = h′2,

φ = h3, φ′ = h′3 = h4, φ′′ = h′4,

∂h1
∂l

= h5,
∂h2
∂l

= h6,
∂h3
∂l

= h7,
∂h4
∂l

= h8,

∂h1
∂m

= h9,
∂h2
∂m

= h10,
∂h3
∂m

= h11,
∂h4
∂m

= h12.


(3.27)

Incorporating the set of notations (3.27), a systemoof first orderoODEsois achieved

that is stated below.

h′1 = h2, h1(0) = l,

h′2 =
−3

3 + 4Nr
(y1h2 +Nbh2h6 +Nth22), h2(0) = −Bi(1− l),

h′3 = h4, h3(0) = m,

h′4 = −Ley1h4 −
(
−3

3 + 4Nr

)(
Nt

Nb

)
(y1h2 +Nbh2h6

+Nth22), h4(0) =
Nt

Nb
Bi(1− l),

h′5 = h6, h5(0) = 1,

h′6 =

(
−3

3 + 4Nr

)
(y1h6 +Nb(h2h8 + h6h4) + 2Nth2h6), h6(0) = Bi,

h′7 = h8, h7(0) = 0,

h′8 = −Ley1h8 −
(

−3Nt

(3 + 4Nr)Nb

)
(y1h6 +Nb(h2h8 + h6h4)

+ 2Nth2h6), h8(0) = −Nt
Nb

Bi,

h′9 = h10, h9(0) = 0,

h′10 =

(
−3

3 + 4Nr

)
(y1h10 +Nb(h2h12 + h10h4) + 2Nth2h10), h10(0) = 0,

h′11 = h12, h11(0) = 1,

h′12 = −Ley1h12 −
(
−3

3 + 4Nr

)(
Nt

Nb

)
(y1h10 +Nb(h2h12 + h10h4)

+ 2Nth2h10), h12(0) = 0.
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RungeoKutta method of orderofour is applied forothe solution of above initial

value problems and the missing conditions are chosen such that

(h1(l,m))η=η∞ = 0,

(h3(l,m))η=η∞ = 0.

 (3.28)

In order to get the closest initial guess, Newton’somethod is directed byothe iter-

ative formula for the solution of (3.28) as mentioned below:

 l(i+1)

m(i+1)

 =

 l(i)

m(i)

−
 ∂h1

∂l
∂h3
∂l

∂h1
∂m

∂h3
∂m

−1 h1

h3


(l(i),m(i),η∞)

.

As per new notations (3.27), the Newton’s iterative scheme takes the form:

 l(i+1)

m(i+1)

 =

 l(i)

m(i)

−
 h5 h7

h9 h11

−1 h1

h3


(l(i),m(i),η∞)

.

The stoppingocriteria forothe shootingomethod is set as:

max{|h1(η∞)|, |h3(η∞)|} < ε,

for some very small positive number ε. The value of ε has been taken as 10−10

through out the calculation.

3.4 ResultsowithoDiscussion

This sectionois dedicated to elaborate the numerical solution of [13]. To reinves-

tigate the impacts of various physical parameters on skin-frictionocoefficient and

Nusseltonumber. The results are illustrated graphically.

For theovalidation of MATLAB code, the results of f ′(η) , θ(η) and φ(η) are

reproduced for the problem discussed by [13]. The set of transformed equa-

tions areosolved for someovalues of the governing parameters,onamely suction S,
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Lewis number Le, magnetic parameter M , Brownian motionoparameter Nb, ther-

mophoresisoparameter Nt and radiationo parameter Nr while Prandltonumber

Pr andothe Biot number Bi are fixed to 6.8 and 0.1 respectively.

In FIGUREo3.2 the effectoof magnetic field parameteroM on the velocityof ′(η) of

the fluid can be seen. As η →∞, the velocity decreasesowith increase in M . The

impact of strong magneticofield resulting into depressing the motion of fluid and

thus decrements into momentum boundary layer caused by the opposing Lorentz

force.

In FIGUREo3.3, the influenceoof the radiation parameter Nroon the temperature

profile θ(η) is shown. It is clearly seen that by the increment of Nr, temperature

inside theoboundary layeroincreases. The radiationoparameter Nr determines the

relative contributionoof conduction heatotransfer toothermal radiation transfer. It

isoevident thatoby raising the radiation parameteroresults in increase of tempera-

ture within the boundary layer.

In FIGURE 3.4, the dimensionless nanoparticle fraction profile φ(η)owith the in-

fluence of Brownianomotion parameter Nb is represented. The concentration of

fluid shows decreasing behavior as value of Nb raises.

In FIGURE 3.5, the variationoof theoskin frictionocoefficient Re
1/2
x Pr−1Cf is de-

picted with λ for various values of suction strength, S. For 0 ≤ λ < 1, we can

see the increment of Re
1/2
x Pr−1Cf as the strength of S is increased. Furthermore,

when λ = 1 for allovalues of S, the skin-frictionocoefficient is zero since f(η) = η

is the solution of (3.14) subject to boundary condition (3.17). As for λ > 1, the

value of Re
1/2
x Pr−1Cf is decreasing as the S strength is increased.

In FIGURE 3.6, the relationship between of Re
1/2
x Pr−1Cf with S is displayed.

When the domain for S is increased, the Re
1/2
x Pr−1Cf is decreasing as the value

of stretching is decreasing.

FIGURE 3.7 represents the variation ofoRe
−1/2
x Nux with λ forodifferent values of

S. The graph indicates that as the S is increased, the Re
−1/2
x Nux also increases.

The solution domain for Re
−1/2
x Nux is getting bigger as the S is increased and

the value of λ increases. As a result, when the S increases theofriction atothe

fluid-split interface ,the heat transferorate atothe surfaceoincreases too.
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FIGURE 3.8 depicts the variation ofoRe
−1/2
x Nux with S for various values of λ.

As the domain for S increased, the Re
−1/2
x Nux is increasing as the value of λ

increased.

Figure 3.2: Velocity Profile f ′(η) for Various Values of M .

Figure 3.3: Temperature Profile θ(η) for Various Values of Nr.



MHD Stagnation-point Flowoof aoNanofluid... 49

Figure 3.4: Nanoparticle Fraction φ(η) for Various Values of Nb.

Figure 3.5: Variation of the Re
1/2
x Pr−1Cf with λ .
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Figure 3.6: Variation of the Re
1/2
x Pr−1Cf with S .

Figure 3.7: Variation of the Re
−1/2
x Nux with λ .
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Figure 3.8: Variation of the Re
−1/2
x Nux with S .



Chapter 4

Effects ofoChemical Reactionoon

Nanofluid Flow Past a Stretching

Sheetowith Thermal Radiations

4.1 Introduction

In thisochapter, the work of Nasir et al.[13] is extended by considering MHD stag-

nation point over aostretching sheetoin the presenceoof chemical reaction with

convective boundaryoconditions and thermal radiation effects. The non-linear

partial differentialoequations of temperatureoand concentration profiles, are con-

verted into aoset of ordinaryodifferential equations by employing helpful similar-

ityotransformations. By performing the shootingotechnique, the numerical solu-

tion of transformed governing ordinary differential equations is obtained. Utilizing

MATLAB tool, the temperature and concentration profiles are analyzed for per-

tinent variables. Through graphs the dynamics of various variables of suction

parameter, stretching parameter, species diffusivity coefficient and chemical reac-

tion parameter are displayed.

52
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4.2 Mathematical Formulation

We consider a steady two dimensional MHD boundary layer flow of a nanofluid

past a stretching surface with the velocity of uw(x) = λUw(x), where λ is the

stretching parameter, as displayed in the FIGURE 4.1. The flow takes place at

y ≥ 0, that is normal to the stretching surface and along x-axis the stretching

surface is measured and a chemical reaction is also taking place as well. It is

assumed that ue(x) is the velocity of the far field. The flow is subjected to a

constant transverse, induced magnetic field B0.

Figure 4.1: Geometry of Physical Model for Stretching Sheet.

The basic unsteady equations with the assumed boundary conditions can be writ-

ten as [19, 20]:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ ν
∂2u

∂y2
+
σB2

0

ρ
(ue − u), (4.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

∂2T

∂y2
+ β

[
DB(C)

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2]
− 1

ρ

∂qr
∂y

, (4.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB(C)

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
+ Kr (C − C∞), (4.4)
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along with the initial and boundary conditions

t < 0 : u = 0, v = 0, T = T∞, C = C∞ for any x, y

t ≥ 0 : uw(x) = λUw(x), v = v0, − k
∂T

∂y
= hf (Tw − T ),

DB(C)
∂C

∂y
+

DT

T∞

∂T

∂y
= 0 at y = 0,

u→ ue(x), T → T∞, C → C∞ as y →∞.


(4.5)

The Rosseland approximation can be considered for radiative heat flux. Using

Taylor series, we might expand the temperature difference T 4 about T∞, for smaller

values of temperature contrast. The formula for radiative heat flux is as follows:

qr = − 16σ∗T 3
∞

3k∗
∂2T

∂y2
. (4.6)

Using (4.6), the energy equation (4.3) yields

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

(
1 +

4

3
Nr

)
∂2T

∂y2
+ β

[
DB(C)

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2]
,

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

(
1 +

4

3
Nr

)
∂2T

∂y2
+ β

[
DB∞(1 + εφ)

∂C

∂y

∂T

∂y
+
DT

T∞(
∂T

∂y

)2]
, (4.7)

here Nr = (1 + 4σ∗T 3
∞/kk

∗) being the radiation parameter. The variable molec-

ular diffusivity is taken in the form as DB(C) = DB∞(1 + εφ(η)), where DB∞ is

Brownian diffusion coefficient and ε is variable species diffusivity parameter, (see

[20]).

Following similarity transformations are used to convert the energy equation (4.7)

and concentration equation (4.4) into dimensionless form

u = axf ′(η), θ(η) =
(T − T∞)

(Tw − T∞)
,

v = −√aαff(η), φ(η) =
(C − C∞)

(Cw − C∞)
,

η =

√
a

αf
y.


(4.8)
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The detailed conversion of continuity equation (4.1) and momentum equation (4.2)

are already discussed in Chapter 3.

The conversion of (4.7) is presented below. To achieve this goal first L.H.S of (4.7)

is transformed as follows:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= −a(Tw − T∞)f(η)θ′(η). (4.9)

The right hand side of (4.7) is formulated as:

αf

(
1 +

4

3
Nr

)
∂2T

∂y2
+ β

[
DB∞(1 + εφ(η))

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2]
= αf

(
1 +

4

3
Nr

)
(
a

αf

)
(Tw − T∞)θ′′(η) + β

[
DB∞(1 + εφ(η))

(
a

αf

)
(Tw − T∞)

(Cw − C∞)φ′(η)θ′ (η) +
DT

T∞

(
a

αf

)
(Tw − T∞)2θ′

2

(η)

]
= a

(
1 +

4

3
Nr

)
(Tw − T∞)θ′′(η) + β

(
a

αf

)[
DB∞(1 + εφ(η))

(Tw − T∞)(Cw−C∞)φ′(η)θ′(η) +
DT

T∞
(Tw − T∞)2θ′

2

(η)

]
= a(Tw − T∞)

[(
1 +

4

3
Nr

)
θ′′(η) +

βDB∞(1 + εφ(η))

αf

(Cw − C∞)θ′(η)φ′(η) +
βDT

T∞αf
(Tw − T∞)θ′2

]
. (4.10)

Combining (4.9) and (4.10) we get

−a(Tw − T∞)f(η)θ′(η) = a(Tw − T∞)

[(
1 +

4

3
Nr

)
θ′′(η) +

βDB∞(1 + εφ(η))

αf

(Cw − C∞)θ′(η)φ′(η) +
βDT

T∞αf
(Tw − T∞)θ′2(η)

]
⇒ −f(η)θ′(η) =

(
1 +

4

3
Nr

)
θ′′(η) +

βDB∞(1 + εφ(η))

αf
(Cw − C∞)θ′(η)

φ′(η) +
βDT

T∞αf
(Tw − T∞)θ′2(η)

⇒
(

1 +
4

3
Nr

)
θ′′(η) +Nb(1 + εφ(η))θ′(η)φ′(η) +Ntθ′2(η) + f(η)θ′(η) = 0.

The necessary steps to convert the concentration equation (4.4) into dimensionless

form are as follows. The detailed conversion of L.H.S of concentration equation is
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already discussed in chapter 3.

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= 0− a(Cw − C∞)f(η)φ′(η))

= −a(Cw − C∞)f(η)φ′(η). (4.11)

Furtehrmore, the R.H.S of (4.4) is transformed into dimensionless form as shown

below.

DB(C)
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
+Kr(C − C∞) =

DB∞(1 + εφ(η))a

αf
(Cw − C∞) φ′′(η) +

DT

T∞

a

αf
(Tw − T∞)θ′′(η) +Kr (C − C∞)

=
DB∞ a

αf
(Cw − C∞)

[
(1 + εφ(η))φ′′(η) +

DT

T∞ DB∞

(Tw − T∞)

(Cw − C∞)
θ′′(η)

]
+

Kr

DB∞

αf
a
φ(η)

=
DB∞ a

αf
(Cw − C∞)

[
(1 + εφ(η))φ′′(η) +

Nt

Nb
θ′′(η)

]
+

Krαf
DB∞a

φ(η). (4.12)

Now comparing (4.11) and (4.12) we get the following form:

⇒ − a(Cw − C∞)f(η)φ′(η) =
DB∞ a

αf
(Cw − C∞)

[
(1 + εφ(η))φ′′(η) +

Nt

Nb
θ′′(η)

]
+
Krαf
DB∞a

φ(η)

⇒ − αf
DB∞

f(η)φ′(η) = (1 + εφ(η))φ′′(η) +
Nt

Nb
θ′′(η) + γLeRexφ(η)

⇒ (1 + εφ(η))φ′′(η) + γLeRexφ(η) + Lef(η)φ′(η) +
Nt

Nb
θ′′(η) = 0.

⇒ (1 + εφ(η))φ′′(η) + γLeRexφ(η) + Lef(η)φ′(η) +
Nt

Nb

(
−3

1 + 4Nr

)
[
Nb(1 + εφ(η))θ′(η)φ′(η) +Ntθ′2(η) + f(η)θ′(η)

]
= 0.
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The dimensionless form of boundary conditions are as follows:

• v(x, y) = v0 at y = 0.

⇒ f(η) = S.

• u(x, y) = uw(x, y) = λUw(x, y) at y = 0.

⇒ f ′(η) = λ.

• − k∂T
∂y

= hf (Tw − T ) at y = 0.

⇒ θ′(η) = −Bi[1− θ(0)].

• DB∞(1 + εφ(η))
∂C

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0.

DB∞(1 + εφ(η))

√
a

αf
(Cw − C∞)φ′(η) +

DT

T∞

√
a

αf
(Tw − T∞)θ′(η) = 0.

βDB∞(1 + εφ(η))
a

αf
(Cw − C∞)φ′(η) + β

DT

T∞

a

αf
(Tw − T∞)θ′(η) = 0

a

[
βDB∞(1 + εφ(η))(Cw − C∞)

αf
φ′(η) +

βDT (Tw − T∞)

T∞αf
θ′(η)

]
= 0

βDB∞(1 + εφ(η))(Cw − C∞)

αf
φ′(η) +

βDT (Tw − T∞)

T∞αf
θ′(η) = 0

⇒ Nb(1 + εφ(η))φ′(η) +Ntθ′(η) = 0 at η = 0.

• u(x, y) → ue(x) as y → ∞.

⇒ f(η) → 1.

• T → T∞ as y → ∞.

⇒ θ(η) → 0.

• C → C∞ as y → ∞.

⇒ φ(η) → 0.
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Hence finally the following two dimensionless ordinary differential equations (4.7)

and (4.4) are achieved

(
1 +

4

3
Nr

)
θ′′(η) +Nb(1 + εφ(η))θ′(η)φ′(η) +Ntθ′2(η) + f(η)θ′(η) = 0. (4.13)

(1 + εφ(η))φ′′(η) + γLeRexφ(η) + Lef(η)φ′(η) +

(
− 3

1 + 4Nr

)
(
Nt

Nb

)[
Nb(1 + εφ(η))θ′(η)φ′(η) +Ntθ′2(η) + f(η)θ′(η)

]
= 0. (4.14)

Where the notation (′) denotes derivative with respect to η and the dimensionless

quantities used in (4.13) and (4.14) are given below

Nb =
βDB∞(Cw − C∞)

αf
, (Brownian motion parameter),

Nt =
βDT (Tw − T∞)

T∞αf
, (Thermophoresis paramter),

Rex =
Uw(x)x

αf
, (Local Reynolds number),

Le =
αf
DB∞

, (Lewis number),

γ =
αfKr

a2x2
, (Chemical reaction parameter).

The transformed boundary conditions are as follows:

At η = 0

f(η) = S, f ′(η) = λ,

θ′(η) = −Bi[1− θ(0)], Nb(1 + εφ(η))φ′(η) +Ntθ′(η) = 0,

f(η) → 1, θ(η) → 0, φ(η) → 0 as η → ∞.


(4.15)
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The physical quantities skin-friction and Nusselt number are calculated in the

similar manner as that of Chapter 3.

• Cf =
τw
ρU2

w

⇒ Rex
1
2Pr−1 Cf = f ′′(0).

• Nux =
xqw

k(Tf − T∞)

⇒ Rex
− 1

2 Nux = −θ′(η),

where

Rex = Uw(x)x/αf is a local Reynolds number,

Uw(x) = a x.

4.3 Solution Methodology

Shooting method is used for the solution of system of coupled ODEs (4.13) and

(4.14) subjected to boundary conditions (4.15). In Chapter 3 results of y1 were

already calculated, then we utilize the computed value of y1 in (4.13) and (4.14).

The missing initial conditions are denoted by r and s for the numerical solution of

our extended coupled ODEs. Following notation are being considered for further

work

θ = Y1, θ′ = Y ′1 = Y2, θ′′ = Y ′2 ,

φ = Y3, φ′ = Y ′3 = Y4, φ′′ = Y ′4 ,

∂Y1
∂r

= Y5,
∂Y2
∂r

= Y6,
∂Y3
∂r

= Y7,
∂Y4
∂r

= Y8,

∂Y1
∂s

= Y9,
∂Y2
∂s

= Y10,
∂Y3
∂s

= Y11,
∂Y4
∂s

= Y12.


(4.16)

Using the notations (4.16), (4.13) and (4.14) can be converted into system of twelve
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first order ODEs as written below

Y ′1 = Y2, Y1(0) = r,

Y ′2 =
−3

3 + 4Nr
(y1Y2 +Nb(1 + εY3)Y2Y6 +NtY 2

2 ), Y2(0) = −Bi(1− r),

Y ′3 = Y4, Y3(0) = s,

Y ′4 =

(
−1

1 + εY3

)[
Ley1Y4 + γRexLeY3 +

(
−3

3 + 4Nr

)
(
Nt

Nb

)
(y1Y2 +Nb(1 + εY3)Y2Y4 +NtY 2

2 )

]
, Y4(0) =

Nt

Nb
Bi(1− r),

Y ′5 = Y6, Y5(0) = 1,

Y ′6 =

(
−3

3 + 4Nr

)
(y1Y6 +Nb((1 + εY3)(Y2Y8 + Y6Y4)+

εY2Y4Y7) + 2NtY2Y6), Y6(0) = Bi,

Y ′7 = Y8, Y7(0) = 0,

Y ′8 =

(
εY7

(1 + εY3)2

)[
Ley1Y4 + γRexLeY3 +

(
−3

3 + 4Nr

)
(
Nt

Nb

)
(y1Y2 +Nb(1 + εY3)Y2Y4 +NtY 2

2 )

]
−
(

1

1 + εY3

)
[
Ley1Y8 + γRexLeY7 +

(
−3

3 + 4Nr

)(
Nt

Nb

)
(y1Y6+

Nb((1 + εY3)(Y2Y8 + Y6Y4) + εY2Y4Y7) + 2NtY2Y6), Y8(0) =
−Nt
Nb

Bi,

Y ′9 = Y10, Y9(0) = 0,

Y ′10 =

(
−3

3 + 4Nr

)
(y1Y10 +Nb((1 + εY3)(Y2Y12 + Y10Y4)+

εY2Y4Y11) + 2NtY2Y10), Y10(0) = 0,

Y ′11 = Y12, Y11(0) = 1,

Y ′12 =

(
εY11

(1 + εY3)2

)[
Ley1Y4 + γRexLeY3 +

(
−3

3 + 4Nr

Nt

Nb

)
(y1Y2 +Nb(1 + εY3)Y2Y4 +NtY 2

2 )

]
−
(

1

1 + εY3

)[
Ley1Y12

+ γRexLeY11 +

(
−3

3 + 4Nr

)(
Nt

Nb

)
(y1Y10 +Nb((1 + εY3)

(Y2Y12 + Y10Y4) + εY2Y4Y11) + 2NtY2Y10), Y12(0) = 0.
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Runge Kutta method of order four is utilized for the solution of the above initial

value problems. Missing conditions are chosen for the above IVPs, such that

(Y1(r, s))η=η∞ = 0,

(Y3(r, s))η=η∞ = 0.

 (4.17)

The set of algebraic equation (4.17) are solved by using Newton’s method which

is governed by the iterative formula as given below:

 r(i+1)

s(i+1)

 =

 r(i)

s(i)

−
 ∂Y1

∂r
∂Y3
∂r

∂Y1
∂s

∂Y3
∂s

−1 Y1

Y3


(l(i),s(i),η∞)

.

As per the notations (4.16), the Newton’s iterative scheme takes the following form

for i = 1, 2, 3... :

 r(i+1)

s(i+1)

 =

 r(i)

s(i)

−
 Y5 Y7

Y9 Y11

−1 Y1

Y3


(r(i),s(i),η∞)

.

The required stopping criterion for the shooting method is set as:

max{|Y1(η∞)|, |Y3(η∞)|} < ε,

for some very small positive number ε. The value of ε has been taken as 10−10.

4.4 Results and Discussion

The key objective of this section, is to investigate the effect of various dimension-

less parameters on temperature profile θ(η) and concentration profile φ(η) of the

flow. The transformed ordinary differential equations (4.13) and (4.14) along with

the boundary conditions (4.15) are numerically solved by using shooting method.

By assuming different values for distinct physical parameters, the numerical solu-

tions of skin-friction and Nusselt number are illustrated by graphs.
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The MATLAB code is varified by the results of θ(η) and φ(η). The coupled equa-

tions along with extended terms are solved for some values of the governing pa-

rameters, namely suction S, Lewis number Le, magnetic parameter M , Brownian

motion parameter Nb, chemical reaction parameter γ, species diffusitivity param-

eter ε, thermophoresis parameter Nt and radiation parameter Nr while Prandlt

number Pr and the Biot number Bi are fixed.

FIGURE 4.2 depicts the behavior of concentration profile θ(η) while varying the

radiation parameter parameter Nr. It is clearly visible that by the increment of

Nr, the temperature inside the boundary layer increases. The radiation param-

eter Nr helps to determine the relative contribution of conduction heat transfer

to thermal radiation transfer. It is noticeable that an increase in the radiation

parameter results in increasing temperature within the boundary layer.

In FIGURE 4.3, the dimensionless nanoparticle fraction profile φ(η) with the in-

fluence of Brownian motion parameter Nb is represented. The concentration of

fluid shows decreasing behavior as value of Nb raises.

FIGURE 4.4 represents the variation of Re
−1/2
x Nux with λ for different values of S.

The graph indicates that as the suction parameter S is increased, the Re
−1/2
x Nux

also increases. The solution domain for Re
−1/2
x Nux is getting bigger as the S is

increased and the value of λ increases. As a result, when the S increases the fric-

tion at the fluid-splid interface , the rate of heat transfer at the surface increases

as well. FIGURE 4.5 depicts the variation of Re
−1/2
x Nux with S for various values

of λ. As the domain for S increased, the Re
−1/2
x Nux is increasing as the value of

λ increased.

FIGURE 4.6 and FIGURE 4.7 reveals the variation of θ(η) and φ(η) with γ, re-

spectively. By increasing the chemical reaction parameter their is efficient increase

in both temperature and concentration profile.

FIGURE 4.8 and FIGURE 4.9 depicts the changing of temperature profile and

concentration profile with species diusivity parameter. By raising the value of ε

their is slight decrease in both of the profiles.
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Figure 4.2: Effects of Nr on Temperature Profile θ(η).

Figure 4.3: Effects of Nb on Nanoparticle Fraction φ(η).
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Figure 4.4: Variation of Re
−1/2
x Nux with λ for Several Values of S.

Figure 4.5: Variation of Re
−1/2
x Nux with S for Several Values of λ.
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Figure 4.6: Temperature Profile θ(η) with Variation of γ.

Figure 4.7: Nanoparticle Fraction φ(η) with Variation of γ.
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Figure 4.8: Temperature Profile θ(η) with Different Values of ε.

Figure 4.9: Nanoparticle Fraction φ(η) with Different Values of ε.



Chapter 5

Conclusion

Summary of this study represents the two-dimensional MHD stagnation-point flow

of a nanofluid past a stretching sheet in the presence of chemical reaction with vari-

able species diffiusivity and radiation effects. The conversion of non-linear PDEs,

describing the proposed flow problem to a set of coupled ODEs which is carried

out by applying appropriate similarity transformations. Numerical solution of the

mathematical model is achieved by using the shooting technique. The impacts of

pertinent flow parameters on the dimensionless energy and concentration profiles

are illustrated in the graphical forms. The conclusions drawn from the numerical

results are summarized below.

Concluding Remarks

The significant explorations of the current research can be concluded as below:

• The heat transfer rate escalates by an increment in the radiation parameter.

• The Brownian motion decreases the nanoparticle fraction profile but has no

effect on temperature profile.

67
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• An increase in the suction strength, the stretching increases the skin friction

and Nusselt number.

• The heat and mass transfer rates climb as the chemical reaction parameter

is escalated.
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